

Enhanced Methodology for Impact Assessment of e-Navigation applications – the SMART case

6th INTERNATIONAL e-Navigation Underway CONFERENCE

COPENHAGEN, Denmark OSLO, Norway February 2- 4, 2016

World Maritime University

Prof Draing M. Baldauf

Prof. Dr.-Ing. M. Baldauf

MSc. Sun-Bae Hong

E-Mail: mbf@wmu.se

www.wmu.se

Michael Baldauf ^{1,3} Sun-Bae Hong ^{1,2}

- ¹ World Maritime University Malmö, Sweden Maritime Risk and Systems Safety Research Group (MaRiSa)
- ² Ministry of Oceans and Fisheries, Maritime Safety Policy Divison

Michèle Schaub, Michael Gluch, Sandro Fischer³

³ Hochschule Wismar, Germany Institute for Innovative Ship Simulation and Maritime Systems (ISSIMS)

World Maritime University

Maritime Post-graduate University Established by IMO in 1983

Focus on Maritime Education, Capacity-Building & Research

Principal Financial Supporters

Government of Sweden

Nippon Foundation, Japan

City of Malmö

e-Navigation - bringing people together

International teams of interdisciplinary, enthusiastic Researchers

Outline

- Introduction
- Present Situation and State of the Art
- Assessment of Potential Impact of e-Navigation
- Training Needs and Requirements
- Preliminary Results and Discussion
- Outlook

From History to Modern ...

TITANIC, 1912

Heine - Mataram, 1988

Disasters seems to be going on

Andrea Doria, 1956

R. Schulte, 2009

Present situation ... Maritime Accidents

Present situation ...

Present situation ...

- Safe and environmentally-friendly shipping
- Technological Development: substantial changes in ICT (Data exchange – volume, types, almost real-time)
- VTS FOC Unmanned ships and autonomous Navigation

Source: www.interschalt.com

Source: www.iunmanned-ship.org

Approaching to assess impact of e-Navigation

- IMO method to assess impact of e-Nav applications
- SMART Navigation: Korean approach to implement IMO e-Navigation: more comprehensive impact assessment
 - * non-SOLAS, including fishing & coastal ships
- Development of a method for quantification
- Case study "Korea" application and results

e-Navigation aims and ambitions Why accidents occur?

Main Causes

√ Human Error : 75 ~ 96%

among others:

Rothblum (2012)

✓ Multiple reasons combined

Among others:

- Hollnagel, Schröder-Hinrichs & Baldauf (2012)
- Wagenaar & Groeneweg (1987)

e-Navigation aims: main tool kit applications

- ✓ 5 Prioritized Solutions
- √ 7 Risk Control Options (RCOs)
- √ 16 Maritime Service Portfolios (MSPs)

^{*} Source: Annex 1 of NAV 59/6, p 20

- ✓ IMO e-Navigation (MSC95, 2014)
 - Expected Reduction of accidents for SOLAS ships: 22,8%

Nav. Acc.(43. 2%) X total Direct Causes (52.7%) = 22.8%

HE(65%) X detailed DCs (94%) X c (65%) = 39.7%

TF (18%) \times detailed DCs (82%) \times c (65%) = 9.6%

EF (17%) \times detailed DCs (30%) \times c (65%) = 3.3%

SMART-Navigation – Application and coverage

SMART-Navigation: SMART-phone like services Non-SOLAS ships: S-mode. LTE-M + VDEs

Items	Analog	Digital		
	VHF	3G	LTE	WiFi
Data Sp'd	9.6 kbps	2.4-14.4 M	40-50 M	60-70 M
Compare	1	250-1500	4200-5200	6250-7300

SMART-Navigation Identification of RCOs relevant for non-SOLAS

RCO 1: Integration of navigation information & equipment including improved software quality assurance

RCO 2 : Bridge alert management

RCO 3: Standardized mode(s) for navigation equipment

RCO 4: Automated and standardized ship-shore reporting

RCO 5: Improved reliability and resilience of onboard PNT

RCO 6: Improved shore-based services

RCO 7: Bridge and workstation layout standardization

Impact Assessment: enhanced and comprehensive quantification

 $AVSA = \sum (RSAD \times ARDC_{HF/TF/EF})$

 $= \sum (RSAD \times c \times \sum RDDC_{HF/TF/EF})$

= $c \times \sum (RSAD \times \sum RDDC_{HF/TF/EF})$

where is:

c = Coefficient (65% for SOLAS ships, 55% for non-SOLAS ships)

AVSA = Actual Volume of selected accident to be reduced by e-navigation

RSAD = Rate of selected accident distribution

ARDC = Actual Rate of risk reduction of each direct cause to be reduced by e-

navigation

RDDC HE = Rate of risk reduction of detailed direct cause of Human Error to be reduced

by e-navigation

RDDC π = Rate of risk reduction of each detailed direct cause of Technical Failure to be

reduced by e-navigation

RDDC EF = Rate of risk reduction of each detailed direct cause of External Factor to be

reduced by e-navigation

Case study: Quantify potential effect of SMART-Navigation

KMST Statistics (2009-2013)

• Total: 4,871

Navigational Accidents

- 43.5% among total

- 64.1% among non-Fishing

- 37.1% among SOLAS Ships

- Human Error : 90.7%

cf. NMA: 43.2% (SOLAS), Human

Error: 65%

Case study: Quantify potential effect of SMART-Navigation

Items	IMO e-Navigation	SMART-Navigation	
Reduction	22.8% + non-NA	56.6%	
Navigational Accidents	22.8% (52.7%)	33.9% (65%) • Fishing: 19.1 %, non-F: 14.8% • SOLAS: 9.2%, non-S: 24.7%	
Other Accidents	Not provided	22.7% • Fishing : 16.5% • non-Fishing : 6.2%	
SOLAS non-SOLAS	SOLAS only (22.8%)	SOLAS ship: 13%non-SOLAS Ships: 43.6%	

Challenges for improvement

Complexity:

e-Navigation will provide a mixture of applications, require interaction between a great variety of users

- Maritime Cloud
- Multi-Source Positioning & R-Mode MF DGNSS; AIS Services
- Maritime Safety Information/Notices to Mariners Service
- Tactical <u>Route Suggestion</u> Service (shore/ship)
- Tactical Exchange of <u>Intended Route</u> (ship-ship and ship-shore)
- Dynamic Predictions
- SMART-Applications, ...

Questions:

What is the exact contribution to more safety? How to ensure smooth introduction to achieve all potential benefits? How can we avoid "e-Nav-assisted" accidents?

...

Simulation-based case studies to identify risk reduction factors and dependencies

Tactical route

- Shore-ship route suggestion
- Electronically transfer a route segment
- Display of intended route

Strategic route

Long term planning

Simulation-based case studies (2)

Use of dynamic predictions

- Planning of safe, sustainable; time-and energy-efficient manoeuvre sequences
- Monitoring and correcting/adapting the manoeuvring process

Simulation-based case studies – synergy effects

Selected Outcome and Results for MET

Training should include:

- Type specific training (urgent user demand/need)
- Training on operational use, limits & possibilities
- Limitations of sensors and information given in the system
- Overall simple and easy to use

Summary, Conclusions and Outlook

- Assessment of potential impact of e-Navigation applications shall include not only SOLAS nut also Non-SOLAS vessels
- IMO Member states shall investigate maritime safety situation in their countries in detail to identify best solutions and priorities
- Application of SMART-Navigation tool kits can have significant impact on Safety of Navigation
- Learning from the past: Adequate training measures needs to be identified and implemented to ensure smooth introduction and avoid e-Navigation-assisted accidents
- Identification and quantification of risk reduction factors

Thank you for your attention! Awaiting your questions!

WORLD MARITIME UNIVERSITY Malmö - Sweden

Dr.-Ing. Michael Baldauf Associate Professor Maritime Safety and Environmental Administration